Construction of Nitrogen-Containing 9-Membered Ring Epoxy Vinyl Ethers via Gold(I)-Catalyzed Intramolecular Cyclization Reactions of Acyclic 5-Aza-2,3-epoxy-7-yn-1-ols

Hsin-Hui Lin, Yi-Ju Chen, Kuan-Yu Liao and Ming-Chang P. Yeh*
Department of Chemistry, National Taiwan Normal University, 88 Ding-Jou Road, Section 4, Taipei 116, Taiwan, R. O. C.

(Received: Mar. 10, 2014; Accepted: May 2, 2014; Published Online: Jul. 25 2014; DOI: 10.1002/jccs.201400121)

A series of substituted nitrogen-containing 9-membered epoxy vinyl ethers has been constructed from easily available 5-aza-2,3-epoxy-7-yn-1-ols. Attack of the hydroxyl group onto the gold(I)-activated alkyne gave the postulated 9-membered allylic vinyl ether gold intermediate which underwent protodeauration affording the 9-membered epoxy vinyl ethers.

Keywords: Alcohol; Alkyne; Claisen rearrangement; Epoxy; Gold; Vinyl ether.

INTRODUCTION

As part of our investigation into intramolecular cyclization reactions of 2-en-7-yn-1-ols with various Lewis- and Brønsted acid, we reported a gold-catalyzed Claisen-type rearrangement of cyclic 8-aryl-5-aza-2-en-7-yn-1-ols, leading to azaspirocyclic ketones (Scheme I, eq 1).1 When acyclic analogues, (Z)-8-aryl-5-azaoct-2-en-7-yn-1-ol 1, was treated with a catalytic amount of the gold cationic species, affording cis-3-aroyl-4-vinylpyrrolidine 2 (Scheme I, eq 2).2 We have proposed an initial step involving an unusual 9-endo-dig attack of the hydroxyl group onto the gold-activated alkyne (Scheme II). The resulting 9-membered allylic vinyl ether gold intermediate 3 underwent a gold-assisted [3,3]-sigmatropic rearrangement to deliver the 3,4-disubstituted pyrrolidine derivative 2. Although several vinylgold(I) intermediates have been reported and fully characterized in the literature,3-9 we are unable to obtain the key 9-membered allylic vinyl ether gold intermediate 3. This failure may be attributed to the facile [3,3]-sigmatropic rearrangement of the postulated reactive intermediate 3 which led to pyrrolidines. In order to confirm the key 9-endo-dig addition,10 we envisaged that the corresponding 5-aza-2,3-epoxy-7-yn-1-ol 4 (Scheme III), generated from epoxidation of the known (Z)-5-aza-2-en-7-yn-1-ols 12 with 1.2 molar equiv of m-chloroperbenzoic acid (mCPBA), may be a good model to offer an evidence in support of the 9-endo-dig addition hypothesis. Herein,

Scheme I Gold-catalyzed Claisen-type rearrangements of nitrogen-containing 2-en-7-yn-1-ols

Scheme II A Postulated reaction path for the formation of cis-3-aroyl-4-vinylpyrrolidine (3) from (Z)-8-aryl-5-azaoct-2-en-7-yn-1-ol (1)
we describe a gold(I)-catalyzed intramolecular cyclization reactions of 5-aza-2,3-epoxy-7-yn-1-ols leading to 9-membered epoxy vinyl ethers. In this transformation, attack of the alcohol functionality onto the gold(I)-catalyzed alkyn produced a 9-membered vinyl ether gold intermediate which underwent protodeauration furnishing the 9-membered epoxy vinyl ether.

RESULTS AND DISCUSSION

To check the catalytic behavior of gold complexes in the intramolecular addition reaction, we first carried out the model reaction between 4a and AuCl$_3$ (0.10 molar equiv) in dichloromethane (DCM) at ambient temperature. However, only starting substrate 4a was recovered quantitatively after prolonged stirring for 24 h. Switching the catalyst to NaAuCl$_4$·2H$_2$O resulted in decomposition of 4a. The use of the two-component catalytic system [Ph$_3$PAuCl/AgSbF$_6$] in DCM at ambient temperature for 24 h gave a trace amount of cyclized product, identified as the 9-membered ring epoxy vinyl ether 5a (Figure 1). Changing the co-catalyst system to 0.1 molar equiv of [Ph$_3$PAuCl/AgOTf] in DCM, 4a produced 5a in 25% isolated yield after the reaction was stirred at ambient temperature for 24 h. Refluxing 5a with [Ph$_3$PAuCl/AgOTf] (0.1 molar equiv) in DCM for 3 h resulted in decomposition of 5a and gave a mixture of unidentified compounds. The investigation of various solvents in the presence of the [Ph$_3$PAuCl/AgOTf] catalyst system revealed that THF, toluene and CH$_3$CN were ineffective. Thus, [Ph$_3$PAuCl/AgOTf] (0.1 molar equiv) in DCM at ambient temperature, albeit in low isolated yield, was used as the standard reaction conditions. The labile 9-membered-ring vinyl ether ring may attribute to the low isolation yield of 5a. NMR studies provided the evidence for support of the structural assignments for 5a. The $^1$H NMR spectrum of 5a showed two doublets centered at δ 7.77 and 7.38, respectively, and a broad multiplet, ranged from δ 7.33–7.26, assigned to seven aromatic protons; a triplet at δ 5.27, assigned to the vinyl proton at C-6 (Figure 1); a doublet of doublets, centered at δ 4.59, assigned to one of the two diastereotopic methylene protons at C-3; a doublet of doublets, centered at δ 4.29, assigned to one of the two diastereotopic methylene protons at C-9; a doublet at δ 4.21, assigned to the two protons at C-7; a triplet, centered at δ 3.29, assigned to the proton at C-2; a doublet of doublets, centered at δ 3.25, assigned to one of the two diastereotopic methylene protons at C-3; a triplet of doublets, centered at δ 3.08, assigned to one of the two diastereotopic methylene protons at C-1; a doublet of doublets, centered at δ 2.64, assigned to one of the two diastereotopic methylene protons at C-9; and a singlet at δ 2.48, assigned to the methyl protons at the tosyl group. The $^{13}$C NMR spectrum exhibited a signal at δ 106.2 assigned to the vinyl carbon at C-6.

With the optimized reaction conditions in hand, we next examined the scope of the reaction using various aryl and alkyl substituted alkynes with [Ph$_3$PAuCl/AgOTf] in DCM. The results of the gold-catalyzed cycloisomerization reactions of 5-aza-2,3-epoxy-7-octyn-1-ols 4a–k to produce 9-membered epoxy vinyl ethers 5a–k are listed in Table 1. In general, cyclization of substrates with various aryl substituents at the terminal position of the acetylene, for example 4a–h, afforded 9-membered epoxy vinyl ethers 5a–h in 16–30% yields (Table 1, entries 1-8). It seems that the electronic effect of the substituent on the phenyl ring is rather insensitive to the yield of the reaction. The low isolated yields of 5a–h may be due to gradual decomposition of the instable aryl vinyl ether functionality during aqeous workup and purification on silica-gel column chromatography. Substrates 4i–k bearing an alkyl group (methyl, n-butyl or allyl) at the alkyn terminus afforded higher yields of the corresponding 9-membered epoxy vinyl ethers 5i–k (50–69%, Table 1, entries 9-11) than those analogous bearing an aryl substituent (4a–k).

Structures of 5c (CCDC 970660), 5h (CCDC 970842), and 5k (CCDC 970662) were confirmed by x-ray diffraction analysis. Figure 2 shows the ORTEP structure of 5c. The reaction path leading to 9-membered epoxy vinyl ethers 5 from 5-aza-2,3-epoxyoct-7-yn-1-ol 4 was suggested in Scheme IV.
of the hydroxyl group onto the gold-activated alkyne gave the postulated allylic vinyl ether gold intermediate 6, which underwent proton migration to yield the gold-hydride 7. The transient intermediate 7 provided the 9-membered epoxy vinyl ether 5 after reductive elimination.

Interestingly, when substrate 8, bearing a diethylester linkage at the tether, was subjected to a catalytic amount (0.1 molar equiv) of [Ph3PAuCl/AgOTf] in DCM at ambient temperature for 6 h, delivering dioxabicyclo[3.2.1]octane derivative 9 in 68% isolated yield (Scheme V). A plausible reaction path for the formation of compound 9 from 8 is suggested in Scheme VI. Due to a Thorpe-Ingold effect presenting by the germinal diester group,[12-14] the oxirane may be in close proximity of the alkyne moiety and attacked at the gold-activated alkyne in a 6-exo-dig manner.

Table 1. Synthesis of 9-membered epoxy vinyl ether 5

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate R</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4a phenyl</td>
<td>25 (5a)</td>
</tr>
<tr>
<td>2</td>
<td>4b 4-methylphenyl</td>
<td>22 (5b)</td>
</tr>
<tr>
<td>3</td>
<td>4c naphthalen-1-yl</td>
<td>16 (5c)</td>
</tr>
<tr>
<td>4</td>
<td>4d 4-methoxyphenyl</td>
<td>20 (5d)</td>
</tr>
<tr>
<td>5</td>
<td>4e 4-bromophenyl</td>
<td>34 (5e)</td>
</tr>
<tr>
<td>6</td>
<td>4f 2-bromophenyl</td>
<td>16 (5f)</td>
</tr>
<tr>
<td>7</td>
<td>4g 3-carbethoxyphenyl</td>
<td>18 (5g)</td>
</tr>
<tr>
<td>8</td>
<td>4h 3-nitrophenyl</td>
<td>30 (5h)</td>
</tr>
<tr>
<td>9</td>
<td>4i methyl</td>
<td>69 (5i)</td>
</tr>
<tr>
<td>10</td>
<td>4j n-butyl</td>
<td>50 (5j)</td>
</tr>
<tr>
<td>11</td>
<td>4k allyl</td>
<td>55 (5k)</td>
</tr>
</tbody>
</table>

[a] Isolated yields after silica-gel column chromatography.
followed by ring opening of the oxirane by the pendant hydroxyl group in a concerted manner to furnish the vinyl ether gold intermediate 10. Protodeauration of 10 led to the formation of the epoxy vinyl ether 11. Protonation of the vinyl ether gave 12. Addition of the oxirane at the cationic carbonyl carbon center followed by a ring opening of the oxirane with H2O afforded dioxabicyclic compound 9. It is worth mentioning that three stereogenic centers of compound 9 are created; however, only the single diastereomer depicted was isolated. Rigorous proof of structure of 9 (CCDC 987755) is confirmed by X-ray diffraction analysis.11

Due to the fact that vinyl ether derivatives are labile under acid conditions, 9-membered epoxy vinyl ether 5c was subjected to a solution of 1.1 molar equiv of HOTf in DCM at ambient temperature. The reaction occurred spontaneously and provided the dioxabicyclo[3.2.1]octane derivative 13 as the only isomer isolated in 55% yield (Scheme VII). Scheme VIII suggested a reaction path leading to 13. Protonation of 5c furnished intermediate 14. Attachment of HOTf to the oxirane via hydrogen bonding allows the ring opening by HOTF from the bottom face followed by attack of the hydroxyl group at the cationic carbonyl carbon center to provide 13.

In conclusion, a gold-catalyzed synthesis of nitrogen-containing 9-membered epoxy vinyl ethers has been developed. The reaction provides an evidence for a 9-endo-dig cyclization the hydroxyl group onto the gold(I)-activated alkyne. Further synthetic applications of the 9-membered epoxy vinyl ethers are currently underway in our laboratory.

EXPERIMENTAL

General Considerations: All reactions were performed with oven-dried glassware under nitrogen atmosphere unless otherwise indicated. Anhydrous solvents or solutions were transferred via an oven-dried syringe. Tetrahydrofuran (THF), di-chloromethane (DCM), acetonitrile and toluene was dried by passing through a column of Al2O3. Flash column chromatography was carried out with silica gel (230–400 mesh). Melting points were determined in open capillaries and are uncorrected.

1H nuclear magnetic resonance (NMR) spectra were obtained with 400 and 500 MHz spectrometers. The chemical shifts are reported in parts per million with either Me4Si (0.00 ppm) or CDCl3 (7.26 ppm) as internal standard. 13C NMR spectra were recorded with 100 and 125 MHz spectrometers with CDCl3 as the internal standard. Infrared (IR) spectra were recorded as neat solutions. Mass spectra were determined by using a spectrometer at an ionization potential of 70 eV and were reported as mass/charge (m/e). High-resolution mass spectra were obtained with a double-focusing mass spectrometer.

General Procedure (I): Synthesis of 8-Aryl-5-aza-2,3-epoxyoct-7-yn-1-ols (4a): To a stirring solution of cis-2-buten-1,4-diol (4.40 g, 50 mmol) in CH2Cl2 (50 mL) at 0 °C were added Et3N (1.32 g, 13 mmol), TBSCl (1.506 g, 10 mmol) and DMAP (0.124 g, 1 mmol). The reaction mixture was stirred at 30 °C for 3 h followed by quenching with 20 mL of water. The reaction mixture was extracted with CH2Cl2 (20 mL × 3). The combined extracts were washed with brine (5 mL × 1), dried over anhydrous MgSO4 (5 g), and concentrated under reduced pressure in a rotary evaporator (silica gel, ethyl acetate/hexanes 1:40) to produce a crude oil. The crude product was used for the following step without further purification. To a solution of triphenylphosphine (3.93 g, 15 mmol) in 75 mL of THF under nitrogen at 0 °C was added diisopropyl azodicarboxylate (DIAD, 3.00 g, 15 mmol). The mixture was allowed to stir at 0 °C for 3 h followed by addition of N-tosylpropargylamine (2.09 g, 10 mmol). The mixture was allowed to stir at 0 °C for 30 min followed by addition of N-tosylpropargylamine (2.09 g, 10 mmol). The reaction mixture was extracted with CH2Cl2 (20 mL × 3). The combined extracts were washed with brine (5 mL × 1), dried over anhydrous MgSO4 (5 g), and concentrated under reduced pressure in ice bath to give (Z)-4-((tert-butyldimethylsilyl)oxy)but-2-en-1-ol as a crude oil. The crude product was used for the following step without further purification. To a solution of triphenylphosphine (3.93 g, 15 mmol) in 75 mL of THF under nitrogen at 0 °C was added diisopropyl azodicarboxylate (DIAD, 3.00 g, 15 mmol). The reaction was allowed to stir at 0 °C for 30 min followed by addition of N-tosylpropargylamine (2.09 g, 10 mmol). The mixture was allowed to stir at 0 °C for 30 min and to it was added (Z)-4-((tert-butyldimethylsilyl)oxy)but-2-en-1-ol (2.03 g, 10 mmol). The reaction was stirred at 0 °C for 30 min and at ambient temperature for 2 h before being concentrated under reduced pressure to give a crude oil. The oil was purified by flash column chromatography (silica gel, ethyl acetate/hexanes 1:40) to produce (Z)-N-(4-((tert-butyldimethylsilyl)oxy)but-2-en-1-yl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (3.06 g, 7.77 mmol, 78%). In a 100-mL round-bottom flask equipped with a stirring bar were added Pd(PPh3)4 (0.39 g, 0.3 mmol), Cul (0.11 g, 0.6 mmol) and PPh3 (3.67 g, 18 mmol). The system was purged with N2 and added Et3N (30 mL). The reaction was allowed to stir at ambient temper-
Synthesis of 9-Membered Ring Vinyl Ethers

atube for 20 min followed by addition of (Z)-N-(4-((tert-butyldimethylsilyl)oxy)but-2-en-1-yl)-4-methyl-N-(prop-2-yn-1-yl)-benzenesulfonamide (5.90 g, 15.0 mmol). The reaction was left at ambient temperature for 6 h. The reaction mixture was quenched with saturated NH4Cl(aq). The mixture was extracted with CH2Cl2 (20 mL × 3). The reaction mixture was stirred at 0 °C for 2 h. The resulting oil was purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexanes 1:1, to produce 4k (0.210 g, 0.62 mmol, 20%) as a yellow oil: 1H NMR (400 MHz, CDCl3) δ 7.77 (s, 2H), 7.29-7.21 (m, 5H), 7.08 (d, J = 8.0 Hz, 2H), 5.63-5.53 (m, 1H), 5.07-4.98 (m, 2H), 4.26 (d, J = 18.2 Hz, 1H), 4.20 (d, J = 18.2 Hz, 1H), 3.79 (s, 2H), 3.48 (dd, J = 14.7, 5.6 Hz, 1H), 3.38 (dd, J = 14.7, 5.6 Hz, 1H), 3.43 (dd, J = 9.8, 5.5 Hz, 1H), 3.20 (dd, J = 9.5, 5.3 Hz, 1H), 2.71-2.70 (m, 3H), 2.40 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 143.7, 135.4, 131.6, 129.5, 127.5, 116.0, 83.1, 74.6, 59.8, 55.9, 54.8, 44.6, 38.2, 22.6, 21.3; IR (CH2Cl2) 3429, 2922, 2221, 1801, 1358, 1347, 1162, 1093, 1041 cm⁻¹; MS (EI) m/z 358.1 [M + Na]⁺, 347.1, 281.3, 258.6; HRMS (ESI) caleed for C12H12NO4NaS [M + Na]⁺ 358.1089, found 358.1080.

General Procedure (III): The Gold(I)-Catalyzed Cyclization of 5-Aza,2,3-epoxyoct-7-yn-1-ols 4: To an oven-dried 25 mL two-neck bottle equipped with a stirrer bar and capped with a rubber septum was added AgOTf (8 mg, 0.03 mmol). The apparatus was evacuated (oil pump) and filled with nitrogen three times. To the reaction mixture were then added PPh3AuCl (15 mg, 0.03 mmol) and compound 4a (111 mg, 0.32 mmol) via syringe in 3 mL of CH2Cl2. The resulting mixture was stirred at ambient temperature for 24 h. The resulting reaction mixture was filtered through a bed of Celite. The filtrate was concentrated in vacuo to give the crude mixture. The crude mixture obtained was purified by flash column chromatography (silica gel, ethyl acetate/hexanes 1:2) to obtain 5a (30 mg, 0.081 mmol, 25%).

(Z)-4-Phenyl-7-tosyl-3,10-dioxa-7-azabicyclo[7.1.0]dec-4-ene (5a): A white solid; mp 132-134 °C; 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 6.5 Hz, 2H), 7.38 (d, J = 6.4 Hz, 2H), 7.33-7.31 (m, 3H), 7.28-7.26 (m, 2H), 5.27 (s, J = 8.4 Hz, 1H), 4.59 (dd, J = 11.6, 4.0 Hz, 1H), 4.29 (d, J = 13.6, 2.8 Hz, 1H), 4.21 (d, J = 8.8 Hz, 2H), 3.29 (m, 1H), 3.25 (d, J = 11.6, 7.4 Hz, 1H), 3.08 (dt, J = 10.8, 3.2 Hz, 1H), 2.64 (dd, J = 14.0, 10.8 Hz, 1H), 2.48 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.1, 143.7, 137.3, 134.2, 129.9, 129.2, 128.6, 127.1, 125.6, 106.2, 69.7, 53.2, 53.1, 43.2, 41.8, 21.5; IR (CH2Cl2) 3505, 2923, 1598, 1340, 1163 cm⁻¹; MS (ESI) m/z 394.1 [M + Na]⁺, 380.2, 372.1, 317.2; HRMS (ESI) caleed for C12H12NO4S [M + Na]⁺ 394.1089, found 394.1089.

(Z)-4-(p-Toly)-7-tosyl-3,10-dioxa-7-azabicyclo[7.1.0]dec-4-ene (5b): To a solution of AgOTf (12 mg, 0.048 mmol) and PPh3AuCl (24 mg, 48 mmol) in 5.0 mL of CH2Cl2 at ambient temperature for 21 h was added 4b (184 mg, 0.48 mmol). The reaction...
mixture was stirred for 24 h, and the crude mixture was purified by flash column chromatography (silica gel, ethyl acetate/hexanes 1:8) to give 5b (37 mg, 0.096 mmol, 20%) as a colorless oil: 

$^1$H NMR (400 MHz, CDCl$_3$) δ 7.75 (d, $J = 8.0$ Hz, 2H), 7.35 (d, $J = 8.0$ Hz, 2H), 7.16 (d, $J = 8.0$ Hz, 2H), 7.11 (dd, $J = 8.0$ Hz, 2H), 5.19 (t, $J = 8.4$ Hz, 1H), 4.56 (dd, $J = 11.8$, 4.2 Hz, 1H), 4.25 (dd, $J = 13.7$, 2.2 Hz, 1H), 4.19 (d, $J = 8.5$ Hz, 2H), 3.29-3.18 (m, 2H), 3.06 (dt, $J = 10.7$, 3.1 Hz, 2H), 2.60 (dd, $J = 13.4$, 11.1 Hz, 1H), 2.47 (s, 3H), 2.34 (s, 3H); $^{13}$C NMR (100 MHz, CDCl$_3$) δ 160.2, 143.7, 138.4, 137.4, 131.4, 130.0, 129.3, 127.1, 125.6, 105.4, 69.7, 53.2, 53.1, 43.2, 42.9, 21.5, 21.2; IR (CHCl$_3$) 3025, 2925, 1645, 1598, 1454, 1351, 1162, 1090, 1052 cm$^{-1}$; MS (ESI) m/z 408.1 ([M + Na]$^+$), 374.3, 242.3, 233.1, 172.1, 150.1; HRMS (ESI) calecd for C$_{21}$H$_{23}$NO$_3$S Na$^+$ 408.1245, found 408.1241.

(5z)-4-(Naphthalen-1-yl)-7-tosyl-3,10-dioxo-7-azabicyclo[7.1.0]dec-4-ene (5c): To a solution of AgOTf (11 mg, 0.043 mmol) and PPh$_3$AuCl (21 mg, 0.043 mmol) in 4.3 mL of CH$_2$Cl$_2$ at ambient temperature was added 4e (194 mg, 0.43 mmol). The reaction mixture was stirred for 24 h, and the crude mixture was purified by flash column chromatography (silica gel, ethyl acetate/hexanes 1:15) to give 5c (66 mg, 0.147 mmol, 34%) as a white solid: mp 86-87°C; $^1$H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, $J = 7.8$ Hz, 1H), 7.84 (d, $J = 8.3$ Hz, 2H), 7.78 (d, $J = 8.4$ Hz, 2H), 7.51-7.44 (m, 2H), 7.40-7.35 (m, 3H), 7.27-7.25 (m, 1H), 5.31 (dd, $J = 9.2$, 7.4 Hz, 1H), 4.37 (dd, $J = 14.1$, 2.9 Hz, 1H), 4.29 (dd, $J = 13.4$, 3.4 Hz, 1H), 4.28-4.12 (m, 3H), 3.46 (dd, $J = 12.8$, 7.4 Hz, 1H), 3.27 (dd, $J = 14.5$, 3.4 Hz, 1H), 3.13-3.09 (m, 1H), 2.82 (dd, $J = 14.1$, 10.5 Hz, 1H), 2.47 (s, 3H); $^{13}$C NMR (100 MHz, CDCl$_3$) δ 159.9, 143.6, 137.1, 133.6, 132.1, 130.9, 130.0, 128.4, 127.7, 127.1, 126.8, 126.2, 125.2, 125.0, 111.8, 67.8, 54.1, 55.3, 46.1, 42.9, 21.5; IR (CHCl$_3$) 3058, 2951, 1656, 1597, 1449, 1340, 1183, 1092 cm$^{-1}$; MS (ESI) m/z 444.1 ([M + Na]+), 434.1, 374.1, 319.1, 301.1; HRMS (ESI) calecd for C$_{21}$H$_{23}$NO$_3$S Na$^+$ 444.1245, found 444.1240. Crystals suitable for X-ray diffraction analysis were grown from CH$_2$Cl$_2$ and hexanes. (5z)-4-(4-Methoxyphenyl)-7-tosyl-3,10-dioxo-7-azabicyclo[7.1.0]dec-4-ene (5d): To a solution of AgOTf (9 mg, 0.036 mmol) and PPh$_3$AuCl (18 mg, 0.036 mmol) in 3.6 mL of CH$_2$Cl$_2$ at ambient temperature was added 4f (164 mg, 0.36 mmol). The reaction mixture was stirred for 24 h, and the crude mixture was purified by flash column chromatography (silica gel, ethyl acetate/hexanes 1:15) to give 5f (27 mg, 0.06 mmol, 16%) as a colorless oil: $^1$H NMR (400 MHz, CDCl$_3$) δ 7.74 (d, $J = 8.2$ Hz, 2H), 7.53 (d, $J = 7.9$ Hz, 1H), 7.33-7.15 (m, 5H), 5.19 (dd, $J = 9.1$, 7.6 Hz, 1H), 4.38 (dd, $J = 14.1$, 2.2 Hz, 1H), 4.25 (dd, $J = 12.4$, 4.9 Hz, 1H), 4.23-4.17 (m, 2H), 3.33 (dd, $J = 12.4$, 7.7 Hz, 1H), 3.21-3.19 (m, 2H), 2.82 (dd, $J = 14.2$, 10.4 Hz, 1H), 2.44 (s, 3H); $^{13}$C NMR (100 MHz, CDCl$_3$) δ 159.7, 143.6, 137.2, 135.7, 133.6, 130.8, 130.3, 129.9, 127.4, 127.1, 129.1, 112.2, 68.2, 53.8, 53.3, 44.6, 42.1, 21.5; IR (CH$_2$Cl$_2$) 3062, 2925, 1653, 1590, 1341, 1161, 1091, 1028 cm$^{-1}$; MS (ESI) m/z 474.0, 472.0 ([M + Na]+), 470.0, 395.2, 315.6, 306.0; HRMS (ESI) calecd for C$_{21}$H$_{21}$NO$_3$S Na$^+$ 472.0194, found 472.0185.

Ethyl 3-(Z)-7-tosyl-3,10-dioxo-7-azabicyclo[7.1.0]dec-4-ene-7-benzoate (5g): To a solution of AgOTf (15 mg, 0.056 mmol) and PPh$_3$AuCl (28 mg, 0.056 mmol) in 5.6 mL of CH$_2$Cl$_2$ at ambient temperature was added 4g (250 mg, 0.56 mmol). The reaction mixture was stirred for 24 h, and the crude mixture was purified by flash column chro-
matography (silica gel, ethyl acetate/hexanes 1:15) to give 5g (45 mg, 0.15 mmol, 18%) as a white solid: mp 164-165 °C; 1H NMR (400 MHz, CDCl3) δ 8.01-7.79 (m, 2H), 7.79 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 7.8 Hz, 1H), 7.41-7.37 (m, 3H), 5.39 (s, J = 8.0 Hz, 1H), 4.62 (dd, J = 11.4, 3.7 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 4.30 (dd, J = 13.9, 2.6 Hz), 4.21 (d, J = 8.4 Hz, 2H), 3.28-3.22 (m, 2H), 3.05 (dt, J = 10.6, 3.6 Hz, 1H), 2.64 (dd, J = 13.7, 10.9 Hz, 1H), 2.47 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 166.0, 159.2, 143.9, 137.2, 134.8, 131.2, 130.1, 130.0, 129.8, 128.7, 127.1, 126.7, 107.5, 96.9, 86.2, 53.1, 53.0, 43.3, 41.8, 21.5, 14.3; IR (CHCl3) 3055, 2926, 1646, 1528, 1458, 1351, 1265, 1163, 1091 cm⁻¹; MS (ESI) m/z 466.1 ([M + Na]⁺), 463.3, 393.2, 360.3, 349.2, 242.3, 167.2; HRMS (ESI) calcld for C23H22NO4NaS [M + Na]⁺ 466.1300, found 466.1294. (Z)-4-Butyl-7-tosyl-3,10-dioxo-7-azabicyclo[7.1.0]deca-4-ene (5j): To a solution of AgOTf (7 mg, 0.026 mmol) and PPh₃AuCl (13 mg, 0.026 mmol) in 2.6 mL of CH₂Cl₂ at ambient temperature was added 4j (88 mg, 0.26 mmol). The reaction mixture was stirred for 24 h, and the crude mixture was purified by flash column chromatography (silica gel, ethyl acetate/hexanes 1:15) to give 5j (49 mg, 0.13 mmol, 50%) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 4.55 (dd, J = 9.6, 7.5 Hz, 1H), 4.44 (dd, J = 10.2, 2.5 Hz, 1H), 4.21 (dd, J = 13.8, 3.1 Hz, 1H), 4.05-3.95 (m, 2H), 3.27-3.19 (m, 2H), 2.97 (dt, J = 10.7, 3.2 Hz, 1H), 2.59 (dd, J = 13.8, 10.7 Hz, 1H), 2.43 (s, 3H), 2.06-1.91 (m, 2H), 1.37-1.19 (m, 4H), 0.84 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 163.3, 145.3, 137.3, 129.8, 127.0, 105.8, 68.5, 53.2, 53.0, 42.8, 41.5, 33.1, 28.4, 22.1, 21.5, 13.8; IR (CHCl3) 3062, 2956, 1572, 1598, 1467, 1343, 1162, 1094 cm⁻¹; MS (ESI) m/z 374.1 ([M + Na]⁺), 371.1, 257.1; HRMS (ESI) calcld for C15H12NO4NaS [M + Na]⁺ 374.1402, found 374.1404. (Z)-4-Allyl-7-tosyl-3,10-dioxo-7-azabicyclo[7.1.0]deca-4-ene (5k): To a solution of AgOTf (15 mg, 0.059 mmol) and PPh₃AuCl (29 mg, 0.059 mmol) in 5.9 mL of CH₂Cl₂ at ambient temperature was added 4k (197 mg, 0.59 mmol). The reaction mixture was stirred for 24 h, and the crude mixture was purified by flash column chromatography (silica gel, ethyl acetate/hexanes 1:15) to give 5k (116 mg, 0.32 mmol, 55%) as a white solid: mp 68-69 °C; 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.66-5.59 (m, 1H), 5.07 (s, 1H), 5.04-5.02 (m, 1H), 4.60 (dd, J = 10.0, 7.0 Hz, 1H), 4.50-4.44 (m, 1H), 4.20 (dd, J = 13.8, 3.2 Hz, 1H), 4.05-3.94 (m, 2H), 2.38-3.22 (m, 2H), 2.98 (dt, J = 10.6, 3.2 Hz, 1H), 2.81-2.69 (m, 2H), 2.58 (dd, J = 13.9, 10.7 Hz, 1H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.6, 143.5, 137.2, 132.9, 129.7, 127.0, 117.9, 106.9, 68.9, 53.1, 53.0, 42.9, 41.4, 38.2, 21.5; IR (CHCl3) 3070, 2954, 1672, 1449, 1341, 1163, 914 cm⁻¹; MS (ESI) m/z 358.1 ([M + Na]⁺), 355.1, 330.1, 319.2, 258.6, 249.1, 241.1; HRMS (ESI) calcld for C17H10NO4NaS [M + Na]⁺ 358.1089, found 358.1098. Crystals suitable for X-ray diffraction analysis were grown from CH₂Cl₂ and hexanes. (IR,5S)-Dimethyl-5-benzyl-7-(hydroxymethyl)-6,8-dioxo-3,3,3-dicarboxylate (9): To a solution of AgOTf (15 mg, 0.026 mmol) and PPh₃AuCl (11 mg, 0.02 mmol) in 5.9 mL of CH₂Cl₂ at ambient temperature was added 8 (80 mg, 0.22 mmol). The reaction mixture was stirred for 12 h, and the crude mixture was filtered through a bed of Celite and then purified by flash column chromatography (silica gel, ethyl acetate/hexanes 1:5) to give 9.
(52 mg, 0.15 mmol, 68%) as a white solid: mp 97–99 °C; 1H NMR (400 MHz, CDCl3) δ 7.32–7.24 (m, 5H), 4.20 (dd, J = 4.8, 1.3 Hz, 1H), 4.10 (dd, J = 6.9, 4.6 Hz, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 3.09–2.99 (m, 3H), 2.77 (dd, J = 9.6, 5.5, 4.3 Hz, 1H), 2.72 (d, J = 11.4 Hz, 1H), 2.60 (d, J = 10.4 Hz, 1H), 2.35 (d, J = 11.4 Hz, 1H), 2.12 (dd, J = 11.5, 3.4 Hz, 1H), 0.97 (dd, J = 6.1, 4.3 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 137.9, 131.8, 130.9, 128.1, 126.0, 125.7, 125.6, 124.8, 124.2, 112.1, 82.6, 74.3, 64.8, 50.2, 48.2, 39.7, 21.5; IR (CH3Cl) ν 3528, 2952, 1731, 1440, 1255 cm−1; HRMS (ESI) calcd for C25H24NO7Na [M + Na]+ 594.0845, found 594.1. Decomposition of the compound was accomplished by X-ray diffraction analysis. CCDC 970660 (5c), CCDC 970662 (5h), and CCDC 978775 (9) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

ACKNOWLEDGEMENTS

This work has been supported by Ministry of Science and Technology (NSC 101-2113-M-003-002-MY3) and National Taiwan Normal University.

REFERENCES

10. After our results published (ref. 2), a similar gold-catalyzed enynols cyclization was also reported in the literature. Park, Y.; Kim, S. Y.; Park, J. H.; Cho, J.; Kang, Y. K.; Chuang, Y. K. Chem. Commun. 2011, 47, 5190.
11. The structure elucidation of the compounds was accomplished by X-ray diffraction analysis. CCDC 970660 (5c), CCDC 970842 (5h), and CCDC 987775 (9) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.