伯贴	•	
編號	•	

108學年度高級中等學校數理及資訊學科能力競賽 化學科決賽

實	作一	- 考試時間	引:	100	分鐘	分數:	

【注意事項】

- 1. 實驗進行中,請全程穿戴實驗衣及安全護目眼鏡;取藥及操作實驗時請遵守實驗安全法則。
- 實驗桌上之實驗藥品及器材均絕對足夠使用,若因個人因素不慎造成器材藥品 破損短缺時,可請求補充,但將視實際情形扣減成績。
- 3. 本實驗室所提供的公用器材如蒸餾水、衛生紙、塑膠滴管可自由取用。
- 4. 實驗器材使用前、後均需以清水清洗乾淨;實驗完畢後請依指示清理桌面與廢 液。
- 5. 本實驗所使用過的廢液可直接倒入水槽。
- 6. 只可使用試場提供之電子計算機。
- 7. 本試題共十四頁(不含方格紙),缺頁或破損時,立即尋求補換。
- 8. 實驗數據須記錄於試卷內規定位置,文字力求清晰,不得潦草。
- 9. 實驗開始前請務必先在每一張試卷上寫上你的編號。

編號:____

鐵離子-水楊酸錯合物的分析與鑑定

一、實驗說明:

在本實驗中,我們將利用光度法定量分析出水溶液中鐵離子和水楊酸根離子所形成錯合物的濃度,進一步的求出樣品中鐵離子的含量、決定此錯合物之實驗式並推算出此錯合物的形成常數 (K_f) 。

水楊酸(Salicylic acid)又名柳酸、鄰羥基苯甲酸或 2-羥基苯甲酸(hydroxybenzoic acid)。

在水溶液中,水楊酸(縮寫為 H_2Sal) 可以脫兩個質子,其相對的解離常數為:

$$H_2Sal_{(aq)} \rightleftharpoons H^+_{(aq)} + HSal^-_{(aq)}$$
 $K_{a1} = 1.05 \times 10^{-3}$
 $HSal^-_{(aq)} \rightleftharpoons H^+_{(aq)} + Sal^{2-}_{(aq)}$ $K_{a2} = 2.51 \times 10^{-14}$

水楊酸可與鐵離子(Ferric ion, Fe^{3+})形成錯合物(complex),主要是去質子後的水楊酸根離子(Sal^{2-})做為配體(ligand)與鐵離子形成錯合物,其實驗式為 $Fe(Sal)_n^{3-2n}$,而所對應的化學反應式為

$$Fe^{3+}_{(aq)} + n Sal^{2-}_{(aq)} \rightleftharpoons Fe(Sal)_n^{3-2n}_{(aq)}$$
 (反應一)

相對應的錯合物形成常數(Ki)則可定義為

$$K_f = \frac{[Fe(Sal)_n^{3-2n}]}{[Fe^{3+}] \times [Sal^{2-}]^n}$$

在不同的 pH 值水溶液中, Fe³⁺與 Sal²⁻會形成不同的錯合物,且所對應的光學活性也不同。在鹼性的水溶液中,所形成的錯合物為橘色;在中性的水溶液,所形成的錯合物為深紅色;在酸性的水溶液,所形成的錯合物為紫色。

本實驗將在酸性水溶液中進行,所形成的錯合物在波長 528 nm 時有最強的吸光度。由於在此波長時 Fe^{3+} 與 Sal^{2-} 皆無吸收,故所測得的吸光度只與 $Fe(Sal)_n^{3-2n}$ 錯合物濃度有關。於一定濃度範圍內,測量一系列波長 528 nm 時的吸光度 (A_{528}) 將與 $Fe(Sal)_n^{3-2n}$ 濃度呈線性關係,此線性關係稱為檢量線

$$A_{528} = A + B \times [Fe(Sal)_n^{3-2n}]$$
 A 與 B 為實驗求出的常數

利用此檢量線,便可藉由測量未知溶液的 A_{528} 求出未知溶液的 $[Fe(Sal)_n^{3-2n}]$ 。

46 贴	•	
編號	•	

二、實驗藥品與器材:

個人藥品:

藥品名稱	數量	藥品名稱	數量
下列藥品請使用吸量管	ទ 取藥	下列藥品請使用滴定管	取藥
飽和 H ₂ Sal 溶液 溶於 0.0025 M HCl _(aq) 中	100 mL (錐形瓶中)	0.0018 M Fe ³⁺ 溶液 溶於 0.0025 M HCl _(aq) 中	140 mL (燒杯中)
0.0025 M HCl 溶液	140 mL (錐形瓶中)	0.0018 M <i>H₂Sal</i> 溶液 溶於 0.0025 M HCl _(aq) 中	110 mL (燒杯中)
未知溶液 液態含 Fe ³⁺ 物種 (溶於 0.0025 M HCl _(aq))	15 mL (試管中)		

個人器材:

器材名稱	數量	器材名稱	數量
試管架	1個	10 mL 刻度吸量管	2 支
試管	20 支	5 mL 刻度吸量管	1 支
試管塞	10 個	安全吸球	1個
光析管,光徑長度1.0公分	1 支	塑膠滴管	22 支
玻璃漏斗	2 支	400 mL 燒杯(裝廢液用)	1個
洗滌瓶	1個	標籤紙	1 張
抹布	1條	滴定管架及蝴蝶夾	1 組
衛生紙	1 包	50 mL 滴定管	2 支
試管刷	1 支		

公用器材:

分光光度計 蒸餾水 拭鏡紙 衛生紙

4台 旦	ょ	•		
編号	阮	•		

三、實驗步驟:

實驗 A. 建立檢量線及測量未知溶液中 Fe3+含量:

第一部分:建立檢量線

- (1) 製備表一中所述的 5 支試管(A1~A5)溶液,並將試管塞上橡皮塞,均勻混合。
- (2) 假設體積可加成,且因 H_2Sal 溶液為過量,故假設錯合物 $[Fe(Sal)_n^{3-2n}]$ 與 Fe^{3+} 濃度相等。計算每支**試管中**混合液的 $[Fe(Sal)_n^{3-2n}]$,並記錄於表一。
- (3) 將 A1~A5 試管中的溶液裝入光析管,以分光光度計測量吸光度(A528),並記錄於表一。(注意:分光光度計已設定工作波長 528 nm,請自行使用公用的 0.0025 M HCl 水溶液做空白溶液進行儀器歸零操作,再進行測量。分光光度計的使用說明,請參見附錄二)

表一 (10分)

試管編號 #	A1	A2	A3	A4	A5
0.0018 M Fe ³⁺ 溶液 溶於 0.0025 M HCl _(aq) 中	1.00	2.00	3.00	4.00	5.00
飽和 H ₂ Sal 溶液 溶於 0.0025 M HCl _(aq) 中	10.0	10.0	10.0	10.0	10.0
0.0025 M HCl 溶液	4.00	3.00	2.00	1.00	0
試管中 $[Fe(Sal)_n^{3-2n}]$ (M)					
吸光度(A528)					

(單位: mL)

(4) 根據表一,利用電子計算機,輸入 $Fe(Sal)_n^{3-2n}$ 濃度(X 軸)及吸光度(Y 軸)數值,求出檢量線的線性回歸方程式(Y=A+B×X),以及 r^2 (r:相關係數)。 (線性回歸的操作步驟請詳閱附錄一)。

檢量線的線性回歸方程式:			
Y = + (A,為截距)	(B,為斜率)	. X	
r ² (相關係數 r 平方)= _			(5分)

4台 旦	ょ	•		
編号	阮	•		

第二部分:測量未知溶液中 Fe3+含量

(5) 另取一支試管,重覆步驟(1)~(3)。按表一的#A3 方式配置溶液,並測定吸光度,再以步驟(4) 所求出 $Fe(Sal)_n^{3-2n}$ 的檢量線,計算未知溶液中 Fe^{3+} 的含量。

步驟(5)中溶液的配置:	
未知溶液 mL;飽和 H ₂ Sal 溶液	mL;HCl 溶液 mL
吸光度 =	
未知溶液中的 $[Fe^{3+}] = $	(5
(詳列計算過程,以 科學記號 表示法取至小數第二位	. °)

伯贴	•	
編號	•	

實驗 B. 利用約伯法 (Job's method) 預測錯合物的實驗式

說明:約伯法是將 Fe^{3+} 與 H_2Sal 溶液以不同比例混合,但固定混合溶液中兩試劑濃度的總和。當混和溶液生成最大量的錯合物時(即吸光度最大時),此混和溶液中兩試劑的比例即為錯合物 $Fe(Sal)_n^{3-2n}$ 中 Fe^{3+} 與 Sal^2 -的比例。

- (1) 製備表二中所述的 9 支試管(B1~B9)溶液,將試管塞上橡皮塞,均勻混合。
- (2) 將 B1~B9 試管中的溶液裝入光析管,以分光光度計測量吸光度(A528),並記錄於表二。
- (3) 將吸光度(Y = h)對混合溶液中 Fe^{3+} 溶液的體積(X = h)繪圖於附件中的方格紙。找出最高吸光值混合溶液的比例,求出 $Fe(Sal)_n^{3-2n}$ 的實驗式(n = h)。

表二 (9分)

試管編號#	B1	B2	В3	B4	В5	В6	В7	В8	В9
0.0018 M Fe ³⁺ 溶液 溶於 0.0025 M HCl _(aq) 中	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
0.0018 M H ₂ Sal 溶液 溶於 0.0025 M HCl _(aq) 中	9.00	8.00	7.00	6.00	5.00	4.00	3.00	2.00	1.00
0.0025 M HCl 溶液	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
吸光度(A528)									

(單位: mL)

根據所求出的實驗式,平衡下面反應式,並寫出相對應的平衡常數 K_{eq}

 $Fe^{3+}_{(aq)} + \underline{\qquad} H_2Sal_{aq} \rightleftharpoons \underline{\qquad} Fe^{3+}(Sal^{2-})_{n(aq)} + \underline{\qquad} H^+_{(aq)}$

 $K_{eq} =$

(10分)

46 贴	•	
編號	•	

實驗 C. 推算實驗 B 中的平衡常數(K_{eq})與錯合物的形成常數(K_f),並測量未知溶液中 Fe^{3+} 含量第一部分:推算實驗 B 中的平衡常數(K_{eq})與錯合物的形成常數(K_f)

- (1) 製備表三中所述的 3 支試管(C1~C3)溶液,將試管塞上橡皮塞,均勻混合。
- (2) 假設體積可加成,計算每個**試管中**混合溶液的起始濃度 $[Fe^{3+}]_{in}$ 、 $[H_2Sal]_{in}$ 與 $[H^+]_{in}$ (假設在此酸性水溶液中, H_2Sal 不解離),記錄於表三。(計算過程須詳列於下頁)
- (3) 量測各混合溶液的吸光度(A528),記錄於表三。
- (4) 利用實驗 A 所求出 $Fe(Sal)_n^{3-2n}$ 的檢量線,計算每個**試管中**混合溶液平衡後的錯合物濃度 $[Fe(Sal)_n^{3-2n}]_{eq}$,記錄於表三。(計算過程須詳列於下頁)
- (5) 由計算出的 $[Fe(Sal)_n^{3-2n}]_{eq}$ 與實驗 B 所推出的平衡反應式,求出每個**試管中**混合溶液平衡後的 濃度 $[Fe^{3+}]_{eq}$ 、 $[H_2Sal]_{eq}$ 與 $[H^+]_{eq}$,記錄於表三。(計算過程須詳列於下頁)

表三 (24分)

試管編號#	C1	C2	С3
0.0018 M Fe ³⁺ 溶液 溶於 0.0025 M HCl _(aq) 中	5.00	4.00	3.00
0.0018 M H ₂ Sal 溶液 溶於 0.0025 M HCl _(aq) 中	5.00	4.00	3.00
0.0025 M HCl 溶液	5.00	7.00	9.00
混合溶液的起始濃度[Fe ³⁺]in			
混合溶液的起始濃度[H ₂ Sal] _{in}			
混合溶液的起始濃度[H ⁺]in			
吸光度(A ₅₂₈)			
混合溶液平衡後的[Fe(Sal) _n ³⁻²ⁿ]eq			
混合溶液平衡後的[Fe ³⁺]eq			
混合溶液平衡後的[H2Sal]eq			
混合溶液平衡後的[H ⁺]eq			

(單位:mL) (表中的數字以科學記號表示法取至小數第二位;計算過程須詳列於下頁。)

46 贴	•	
編號	•	

表三計算過程

試管中混合溶液的起始濃度計算	
一 武官下此合俗权的起始展及引并 	
試管中混合溶液平衡後的濃度計算	

14 71		
編號	•	

(6) 利用表三數據,計算 $C1\sim C3$ 每個試管混合液中的平衡常數 K_{eq} (參考實驗 B 的表示式)。

試管編號#	C1	C2	С3	平均 Keq
平衡常數 Keq				

(5分)

(7) 由平均 K_{eq} ,計算 $Fe(Sal)_n^{3-2n}$ 的形成常數 K_f (參考實驗說明)。

(詳列計算過程,以科學記號表示法取至小數第二位。)

(5分)

46	贴	•	
絒	號	•	

第二部分:測量未知溶液中 Fe3+含量

(8) 另取一支試管,重覆步驟 $(1)\sim(5)$ 。按表三的#C2 方式配置溶液,並測定吸光度。再利用步驟(6)所求出的#Keq,計算未知溶液中#Fe $^{3+}$ 的含量。

步驟(8)中溶液的配置:	
未知溶液 mL; 0.0018 M H ₂ Sal 溶液 mL; HCl 溶液	mL
吸光度 =	
未知溶液中的[Fe^{3+}] = M	(5 分
(詳列計算過程,以 科學記號 表示法取至小數第二位。)	

編號	:	

四、問題與討論:

(1)	推	導實驗 B 中所敘述的平衡常數(K_{eq})、實驗說明中的錯合物形成常數(K_f)與水楊	酸的	解離常
	數($(K_{a1} \cdot K_{a2})$ 的關係為何?		
			(3	1 21
			(5	77)
(2)	錯	合物(MLx)的形成是靠配體(L)提供電子對填入金屬離子(M)的空軌道而產生鍵網	结。.	本次實驗
	中自	的鐵離子可提供六個空軌道與配體形成一個六配位的錯合物(ML ₆)。		
	a.	試問鐵離子所提供的六個空軌道是由鐵的何種原子軌道所貢獻的?(鐵的原子	·序為	§ 26)
			(3	分)
	b.	試問水楊酸根離子(Sal ²⁻)的配體能提供幾個電子對與鐵離子鍵結?是由 Sal ²⁻ 何	處提	提供電子
		對?		
			(3	分)
			_	74)
	c.	由實驗 B 所求出的 Fe(Sal) _n 3-2n 的實驗式與 n 值,並考慮鐵離子需形成一個 z	 六配	 位的錯合
		物,試寫出實驗B中完整鐵離子錯合物的實驗式。		
			(3	分)

	編號:	
(3)) 化學反應平衡常數(K)並非是一經驗值的常數,而是在系統到達化學反應平衡時,	與所對應的
	吉布士自由能(Gibbs Free Energy)變化量(AG0)有關	
	$K = e^{-\Delta G_0/\mathrm{RT}}$ 或是 $\Delta G_\theta = -\mathrm{RTln}(K)$	
	R 為理想氣體常數(8.314 焦耳/(莫耳×度 K)), T 為絕對溫度, $\ln(K)$ 為 K 的自然對	數。而
	$\Delta G_{ heta}$ 又與其化學反應的反應熱 $(\Delta H_{ heta})$ 與亂度變化量 $(\Delta S_{ heta})$ 有關,即 $\Delta G_{ heta} = \Delta H_{ heta} - \mathrm{T} \Delta S_{ heta}$	5θ °
	以 Fe^{3+} 與 Sal^{2-} 形成錯合物 $Fe(Sal)_n^{3-2n}$ 為例,錯合物的形成常數(K_f)與錯合反應(實	驗說明中的
	反應一)的 $\Delta G_0 \cdot \Delta H_0$ 與 ΔS_0 有關。	
	a . 由實驗 C 所求出的 K_f 值,推算出反應一的 ΔG_0 會大於或小於 0 ?	
		(3 分)
	b . 由反應一的式子,推測其 ΔS_{0} 會大於或小於 0 ? 為什麼 ? 進一步的推論反應	一為吸熱
	或放熱反應(ΔH_0 會大於或小於 0)?為什麼?	
		(4 分)

c. 在反應未達平衡時,系統的吉布士自由能變化量為 ΔG ; 且 $\Delta G \neq \Delta G_0$ 。若 $\Delta G > \Delta G_0$ 時,則此時系統中的反應物或是產物會比其平衡時的濃度大?

(3 分)

編號:_____

附錄一: CASIO fx-350MS 計算機廻歸計算(REG)使用說明

想要使用迴歸執行統計計算時,讀用 WOE 鍵進入 REG 模式。

(REG) Lin Log Exp * 1 2 3

- 在 SD 模式及 REG 模式中, MH 鍵起 MT 鍵的作用。
- 進入 REG 模式將顯示類似如下的畫面。
- 按要使用之迴歸類型對應的數字鍵(①、②或③)。
 ①(Lin):線性迴歸

Lin 1	Log Exp *	
● ↓	, ↑ •	_
+Pwr 1	Inv Quad 2 3	

- 在開始資料輸入之前, 務必按 SHIFT MODE (CLR) 1 (Scl) 鍵清除統計記憶體。
- 請使用下述鍵操作輸入資料。

< x 資料> • < y 資料> • T

迴歸係數 A	SHIFT 2 (S-VAR) ● 1 (A)
迴歸係數 B	SHIFT 2 (S-VAR) 2 (B)
相關係數「	SHIFT 2 (S-VAR) ● ③ (r)

線性迴歸

線性迴歸的迴歸公式如下: y = A + Bx。

範例:氣壓與溫度

執行線性迴歸,以求得下列資料的迴歸公式期間和相關係數。

溫度°C (x 數值)	氣壓 hPa (y 數值)	溫度℃ (x 數值)	氣壓 hPa (y 數值)
10	1003	25	1011
15	1005	30	1014
20	1010		

在 REG 模式下:

1 (Lin)

10 • 1003 DT

n= REG 1.

每次按 OT 登錄輸入時,該點的資料輸入數會顯示在顯示幕上 (n 值)。

15 1005 0 1010 1010 25 1011 0 30 1014 0

迴歸係數 A = 997.4

\$HFT 2 (S-VAR) ▶ 1 (A) ■

997.4

迴歸係數 B = 0.56

0.56

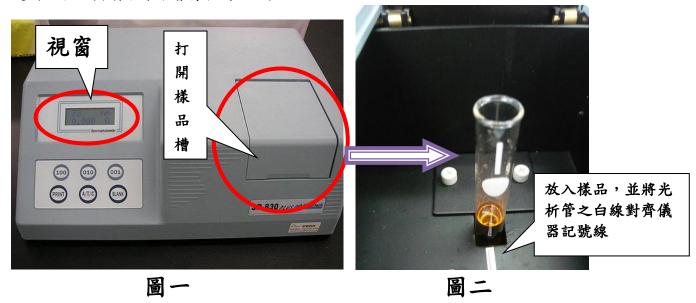
相關係數 r = 0.982607368

0.982607368

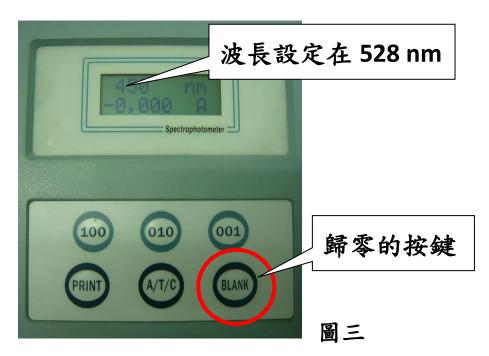
範例 2:

(x, y)=(1, 4)(2, 6)(5, 7)。指定結果為 Fix 4 (四位小數)

線性回歸 Y = 3.9231 + 0.6538*X ; A=3.9231; B=0.6538; r=0.8910; $r^2=0.7940$


範例 3:

 $(x,y)=(2.00\times10^{-4},0.817)(2.50\times10^{-4},1.002)(3.00\times10^{-4},1.231)$ 。指定結果為 Fix 4 (四位小數) 線性回歸 Y=-0.0183+4140 \times X ; A=-0.0183; B=4140.0000; r=0.9981; r²=0.9962


46 贴	•	
編號	•	

附錄二:分光光度計的使用說明

分光光度計已事先調好在 528 nm 固定波長,將制式的光析管(內裝 3 mL 的待測溶液)外面先使用拭鏡紙擦拭後,置入於分光光度計的待測位置(如圖二),蓋上蓋子,讀取讀數(吸收度)到小數點第 3 位後,即可取出。(注意:請依據你們的編號使用分光光度計,每次所用的分光光度計必須是同一台,其讀數才不會有相對誤差)

歸零:將光析管(內裝 3 mL 0.0025 M 的 HCl 溶液)作為空白溶液(公用),放入樣品槽,按 BLANK

若吸收度是 0.000 則直接測量後紀錄即可。

108 學年度高級中等學校數理及資訊學科能力競賽 化學科決賽

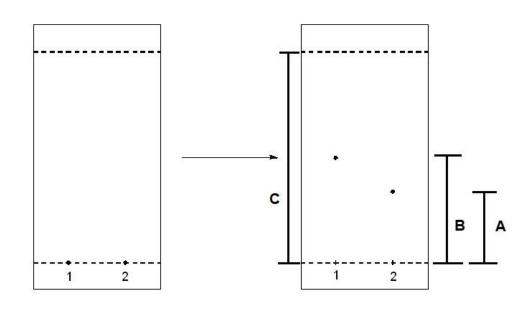
實作二 時間:100 分鐘	編號:	分數:
---------------	-----	-----

【注意事項】

- (1) 實驗前請將護目鏡及手套戴上,若手套大小不合者可替換。
- (2) 實驗桌上之器材與藥品均足夠使用,若有不足需要更多藥品,可以 向老師申請,但是每次請領扣成績 5 分。
- (3) 使用實驗玻璃器材請務必小心。使用熱水時,一定要戴上布手套操作實驗並特別注意安全。本實驗室所提供的公用器材如蒸餾水、衛生紙可自由取用。
- (4) 實驗完畢後,請依指示清理桌面與廢液。並以清水清洗、潤溼玻璃 器皿。
- (5) 本實驗所使用過的有機廢液,請收集至前方講桌燒杯中,再倒入廢 液桶回收。
- (6) 只能使用本次試場所提供的簡易型計算機。
- (7) 倘若實驗發生意外時,一定要立刻通知監考老師,以進行協助及緊 急處理。

【題目】製備二苯亞甲基丙酮 (Dibenzalacetone)

本實驗是使用**丙酮** (Acetone)以及苯甲醛 (Benzaldehyde)進行醛醇縮合反應製備 二苯亞甲基丙酮 (Dibenzalacetone),其反應式如下:


此一實驗須用到再結晶的技巧來純化產物,同時也用到薄層色層分析法。其介紹如下:

- (1) 再結晶(Recrystallization):對化學物質尤其是固體而言是一種非常重要的純化技巧,在實驗室純化固體所用的結晶方式,首先是將固體或黏稠狀的混合物完全溶解在適當及適量的熱溶劑中,待溶液冷卻至某個溫度時,將會形成過飽和的溶液而使固體結晶出來。在此狀況下,分子會逐漸堆積在晶格上,形成高純度而排列整齊的晶體,而在形成晶體的過程中,因為雜質的溶解度較大且濃度並未到達過飽和,所以會繼續溶解在溶液中而不會形成結晶,如此便可達到純化固體的效果。最後再將所得到的結晶用過濾法(或其他方法)分離,並用冷的溶劑洗滌晶體表面的雜質,乾燥後得到晶體。
- (2) 薄層色層分析法(Thin-Layer Chromatography;簡稱 TLC):將欲分離的試樣溶液,用毛細管點在層析片的一端,量越少分離的效果越好越明顯,然後放入盛有少量展開液的展開槽中,透過毛細現象,混合物中不同的化合物,因其與靜相、動相之間的吸附程度、親和力的不同,故展開劑會攜帶著不同成分,沿著薄層板緩緩上升,而將各成分分離開來。可藉由物理或化學方法呈色,由呈色的位置來計算各成分移動的距離,並與展開液移動的距離之比值,得 Rf值。此數值為該化合物於此展開液的特性,可作鑑定、分離混合物之最佳條件之用。

$\mathbf{R}_{\mathbf{f}} = [$ 化合物上升的高度] / [展開液前沿上升的高度]

薄層層析在有機化學上有很多重要的用途:

- (a)估計兩化合物是否相同; R_f 值不同的,必為不同的化合物,但 R_f 相同的,則不一定是相同的化合物。
- (b)決定混合物至少含有幾種不同成分。
- (c)可檢視化學反應進行的程度

$$R_f 1 = B / C$$

$$R_f 2 = A / C$$

圖 1 薄層色層分析的變化的過程與 Rf 值示意圖

【實驗藥品】

 苯甲醛〈Benzaldehyde〉
 (公用講桌)

 丙酮〈Acetone〉
 (公用講桌)

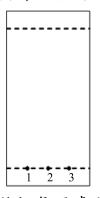
 氫氧化鈉溶液 3 M〈NaOH〉
 1 份

 乙醇 95 %〈Ethanol〉
 1 份

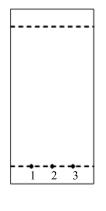
 蒸餾水〈H2O〉
 (公用講桌)

 乙酸乙酯 〈Ethyl acetate〉
 (公用講桌)

【個人器材】


樣品瓶 20 mL	$\times 1$	微量離心瓶	$\times 2$
隔熱布手套	$\times 1$	TLC 片 (5x2 cm)	× 5
量筒 10 mL	$\times 1$	水浴鍋	$\times 2$
滴管	$\times 2$	錶玻璃	$\times 1$
手套	$\times 1$	抹布	$\times 1$
濾紙	$\times 2$	刮勺	$\times 1$

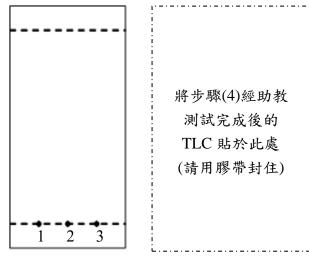
【公用器材】


熱水 展開槽 紫外線燈 (請勿直視) 展開液 (乙酸乙酯:正己烷=1:9) 燒杯 1000 毫升 苯甲醛標準液 抽氣過濾裝置 天平 膠帶 丙酮 乙醇(裝洗滌瓶) 剪刀 量筒 10 毫升 毛細管 碎冰 鑷子 標籤紙 衛生紙 洗滌瓶 拋棄式手套 烘箱 乙酸乙酯 3 M 氫氧化鈉溶液 尺 毛刷 鉛筆

【實驗步驟】

- (1) 取 3.2 毫升 95%的乙醇加入已經裝有 3 毫升 3 M 的 NaOH 水溶液的 20 mL 樣品 瓶中,並混合均匀。
- (2) 至前方講桌由助教依序加入 0.4 毫升的苯甲醛,及 0.14 毫升的丙酮於樣品瓶中, 並蓋上蓋子(註 1: 丙酮易揮發,需用蓋子蓋上)。
- (3) 搖動樣品瓶使溶液均勻混合,間斷性地搖動樣品瓶 10 至 15 分鐘,此時會有黃 色固體產生。搖動完成後靜置一段時間,使固體顆粒變大再做下一步。
- (4) 進行抽氣過濾(濾紙不須秤重),以至少 10 毫升的蒸餾水清洗固體(註 2: 此步驟目的在除去多餘 NaOH),再用少量的冰冷的乙醇清洗之,待其乾後拿取些許清洗過的固體放入微量離心瓶(這邊要做 TLC 測試:取出一點固體用乙酸乙酯溶解,TLC表示如下圖,按下圖方式點片,交給助教測試;待 TLC 展開完畢並在空氣中乾燥後,將 TLC 片置於紫外線的燈光下觀察,用鉛筆將所觀察到的所有具有吸收的點輕輕描繪出來紀錄 Rf值,並用膠帶貼於第6頁問題一指定區域)。

- 1為步驟(4)的產物
- 2為苯甲醛和步驟(4)的產物
- 3為苯甲醛
- (5) 將抽氣過濾完的固體放在樣品瓶中,加入 2-5 毫升乙醇,將樣品瓶放置熱水中搖 晃,直至固體完全溶解(勿加上蓋子!)。
- (6) 將樣品瓶慢慢冷卻至室溫,再置於冰浴中至少 10 分鐘,待結晶析出後進行下一步。
- (7) 抽氣過濾(濾紙需秤重,將濾紙重計為 W1 並紀錄在第8頁,將試卷給予監考老師簽名)濾出晶體,並以冰冷的乙醇清洗晶體。
- (8) 拿取些許清洗過的固體放入微量離心瓶(這邊要做 TLC 測試:取出一點固體用乙酸乙酯溶解,TLC 表示如下圖,按下圖方式點片,交給助教測試;待 TLC 展開完畢並在空氣中乾燥後,將 TLC 片置於紫外線的燈光下觀察,用鉛筆將所觀察到的所有具有吸收的點輕輕描繪出來紀錄 Rf值,並用膠帶貼於第6頁問題一指定區域)。將黃色晶體與濾紙放在錶玻璃上(貼上標籤,填上你的編號),繳交給助教,助教會拿至約50°C烘箱烘乾,並交由助教計算產率。

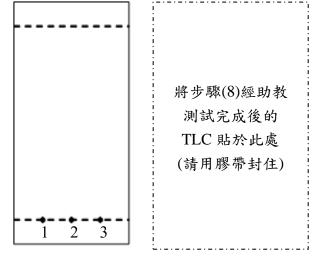


- 1為步驟(8)的產物
- 2 為苯甲醛和步驟(8)的產物
- 3為苯甲醛

【問題】

一. 將你的 TLC 片結果描繪在下方圖示並用鉛筆將 TLC 片上有吸收的輕輕圈起來並貼在下方圖示 (20%)

步驟(4)


- 1為步驟(4)的產物
- 2為苯甲醛和步驟(4)的產物
- 3為苯甲醛

紀錄各點 Rf值並寫下計算過程:

 $R_f 1$

 $R_f 3$

步驟(8)

- 1為步驟(8)的產物
- 2 為苯甲醛和步驟(8)的產物
- 3為苯甲醛

紀錄各點 Rf值並寫下計算過程:

 $R_f 1$

 $R_f 3$

二. 請計算並完成填寫表內所需的數據 (8%)

	反應物		產 物			
	苯甲醛	丙 酮	二亞苄基丙酮 (Dibenzalacetone)			
分子式						
分子量						
密度	1.04 g/ml	0.79 g/ml				
體積(mL)	0.4	0.14				
質量(g)			理論產物重(g)			
莫耳數			理論產物莫耳數			
(mmol)			(mmol)			

請詳列計算式,計算至小數點第二位,假設原子量 H:1.00;O:16.00;C:12.00。

三. 氫氧化鈉水溶液在此醛酮縮合反應中作為鹼,反應中會與丙酮進行酸鹼反應產生丙酮的共軛鹼與水,請回答下列問題: (16%)

(a)請寫出此反應的反應平衡式

申召	监考老	師填	寫)									
實際	祭產物	的重	量:			g,產	率:_			% • (50	分)	(此欄
W1	(濾紙)	重):		;	g (至	监考老師	簽名)		
五.	實際	產物自	的產率	(濾紙	需秤重							
맹.	以冰	令的乙	醇清浴	た固體(的主要	目的為	何?	(6 %)				
	(b)請;	為下內	可酮的	共軛鹼	之結構	(如該絲	吉構有	共振式	,需為	出可能的	共振:	式)